On the differentiability of Lipschitz mappings in Fréchet spaces
A new drop property, the quasi-weak drop property, is introduced. Using streaming sequences introduced by Rolewicz, a characterisation of the quasi-weak drop property is given for closed bounded convex sets in a Fréchet space. From this, it is shown that the quasi-weak drop property is equivalent to weak compactness. Thus a Fréchet space is reflexive if and only if every closed bounded convex set in the space has the quasi-weak drop property.
The aim of this note is 1. to show that some results (concerning the structure of the solution set of equations (18) and (21)) obtained by Czarnowski and Pruszko in [6] can be proved in a rather different way making use of a simle generalization of a theorem proved by Vidossich in [8]; and 2. to use a slight modification of the “main theorem” of Aronszajn from [1] applying methods analogous to the above mentioned idea of Vidossich to prove the fact that the solution set of the equation (24), (25)...
We exhibit a general method to show that for several classes of Fréchet spaces the Three-space-problem fails. This method works for instance for the class of distinguished Fréchet spaces, for Fréchet spaces with the density condition and also for dual Fréchet spaces (which gives a negative answer to a question of D. Vogt). An example of a Banach space, which is not a dual Banach space but the strong dual of a DF-space, shows that there are two real different possibilities of defining the notion...
We prove that any infinite-dimensional non-archimedean Fréchet space is homeomorphic to where is a discrete space with . It follows that infinite-dimensional non-archimedean Fréchet spaces and are homeomorphic if and only if . In particular, any infinite-dimensional non-archimedean Fréchet space of countable type over a field is homeomorphic to the non-archimedean Fréchet space .