A projective description of the simple scalar function space.
The splitting problem is studied for short exact sequences consisting of countable projective limits of DFN-spaces (*) 0 → F → X → G → 0, where F or G are isomorphic to the space of distributions D'. It is proved that every sequence (*) splits for F ≃ D' iff G is a subspace of D' and that, for ultrabornological F, every sequence (*) splits for G ≃ D' iff F is a quotient of D'
We show that some unital complex commutative LF-algebra of -tempered functions on (M. Hemdaoui, 2017) equipped with its natural convex vector bornology is useful for functional calculus.
If is an increasing sequence of absolutely convex sets, in a barrelled space , such that , it is deduced some properties of from the properties of the sets of . It is shown that in a barrelled space any subspace of infinite countable codimension, is barrelled.
There is a nontrivial gap in the proof of Theorem 5.2 of [2] which is one of the main results of that paper and has been applied three times (cf. [2, Theorem 5.3, (G) in Section 6, Theorem 6.4]). Till now neither the gap has been closed nor a counterexample found. The aim of this paper is to give, by means of some general results, a better understanding of the gap. The proofs that the applications hold will be given elsewhere.