Previous Page 2

Displaying 21 – 25 of 25

Showing per page

On vectorial inner product spaces

João de Deus Marques (2000)

Czechoslovak Mathematical Journal

Let E be a real linear space. A vectorial inner product is a mapping from E × E into a real ordered vector space Y with the properties of a usual inner product. Here we consider Y to be a -regular Yosida space, that is a Dedekind complete Yosida space such that J J = { 0 } , where is the set of all hypermaximal bands in Y . In Theorem 2.1.1 we assert that any -regular Yosida space is Riesz isomorphic to the space B ( A ) of all bounded real-valued mappings on a certain set A . Next we prove Bessel Inequality and Parseval...

Currently displaying 21 – 25 of 25

Previous Page 2