A bipolar theorem for L
Let E be a Banach function space over a finite and atomless measure space (Ω,Σ,μ) and let and be real Banach spaces. A linear operator T acting from the Köthe-Bochner space E(X) to Y is said to be absolutely continuous if whenever μ(Aₙ) → 0, (Aₙ) ⊂ Σ. In this paper we examine absolutely continuous operators from E(X) to Y. Moreover, we establish relationships between different classes of linear operators from E(X) to Y.