Spaces of Vector-Valued Measurable Functions.
Let be a real Banach space and let be an ideal of over a -finite measure space . Let be the space of all strongly -measurable functions such that the scalar function , defined by for , belongs to . The paper deals with strong topologies on . In particular, the strong topology ( the order continuous dual of ) is examined. We generalize earlier results of [PC] and [FPS] concerning the strong topologies.
In this article, it will be shown that every -subgroup of a Specker -group has singular elements and that the class of -groups that are -subgroups of Specker -group form a torsion class. Methods of adjoining units and bases to Specker -groups are then studied with respect to the generalized Boolean algebra of singular elements, as is the strongly projectable hull of a Specker -group.