Elementary Tauberian theorems for regular linear operators.
Exhaustive and uniformly exhaustive elements are studied in the setting of locally solid topological Riesz spaces with the principal projection property. We study the structure of the order interval [0,x] when x is an exhaustive element and the structure of the solid hull of a set of uniformly exhaustive elements.
Soit un sous-espace fermé d’un espace de Banach ordonné ; ce travail propose des conditions nécessaires et suffisantes pour qu’il existe , tel que toute forme linéaire positive et continue sur admette une extension linéaire positive et continue sur , vérifiant . On termine par l’exemple d’un couple ne possédant pas la propriété précédente bien que toute forme linéaire positive continue sur se prolonge en une forme linéaire du même type en .