Geometry of modulus spaces.
It is proved that if X is a rotund Banach space and M is a closed and proximinal subspace of X, then the quotient space X/M is also rotund. It is also shown that if Φ does not satisfy the δ₂-condition, then is not proximinal in and the quotient space is not rotund (even if is rotund). Weakly nearly uniform convexity and weakly uniform Kadec-Klee property are introduced and it is proved that a Banach space X is weakly nearly uniformly convex if and only if it is reflexive and it has the weakly...