Page 1

Displaying 1 – 5 of 5

Showing per page

C(K) spaces which cannot be uniformly embedded into c₀(Γ)

Jan Pelant, Petr Holický, Ondřej F. K. Kalenda (2006)

Fundamenta Mathematicae

We give two examples of scattered compact spaces K such that C(K) is not uniformly homeomorphic to any subset of c₀(Γ) for any set Γ. The first one is [0,ω₁] and hence it has the smallest possible cardinality, the other one has the smallest possible height ω₀ + 1.

Complex Banach spaces with Valdivia dual unit ball.

Ondrej F. K. Kalenda (2005)

Extracta Mathematicae

We study the classes of complex Banach spaces with Valdivia dual unit ball. We give complex analogues of several theorems on real spaces. Further we study relationship of these complex Banach spaces with their real versions and that of real Banach spaces and their complexification. We also formulate several open problems.

Continuity properties up to a countable partition.

Aníbal Moltó, José Orihuela, Stanimir Troyanski, Manuel Valdivia (2006)

RACSAM

Approximation and rigidity properties in renorming constructions are characterized with some classes of simple maps. Those maps describe continuity properties up to a countable partition. The construction of such kind of maps can be done with ideas from the First Lebesgue Theorem. We present new results on the relationship between Kadec and locally uniformly rotund renormability as well as characterizations of the last one with the simple maps used here.

Countable products of spaces of finite sets

Antonio Avilés (2005)

Fundamenta Mathematicae

We consider the compact spaces σₙ(Γ) of subsets of Γ of cardinality at most n and their countable products. We give a complete classification of their Banach spaces of continuous functions and a partial topological classification.

Currently displaying 1 – 5 of 5

Page 1