The search session has expired. Please query the service again.
We show that for "most" compact nonmetrizable spaces, the unit ball of the Banach space C(K) contains an uncountable 2-equilateral set. We also give examples of compact nonmetrizable spaces K such that the minimum cardinality of a maximal equilateral set in C(K) is countable.
We study extension operators between spaces of continuous functions on the spaces of subsets of X of cardinality at most n. As an application, we show that if is the unit ball of a nonseparable Hilbert space H equipped with the weak topology, then, for any 0 < λ < μ, there is no extension operator .
Currently displaying 1 –
2 of
2