Perturbations of Positive Semigroups and Applications to Population Genetics.
2000 Mathematics Subject Classification: Primary 46B20. Secondary 47A99, 46B42.It was shown in [2] that the most natural equalities valid for every rank-one operator T in real Banach spaces lead either to the Daugavet equation ||I+T|| = 1 + ||T|| or to the equation ||I − T|| = ||I+T||. We study if the spaces where the latter condition is satisfied for every finite-rank operator inherit the properties of Daugavet spaces.
In this article we suppose that E is an ordered Banach space whose positive cone is defined by a countable family of positive continuous linear functionals on E, i.e. E₊ = x ∈ E | for each i, and we study the existence of positive (Schauder) bases in ordered subspaces X of E with the Riesz decomposition property. We consider the elements x of E as sequences and we develop a process of successive decompositions of a quasi-interior point of X₊ which at each step gives elements with smaller support....