Das Spektrum von Verbandsoperatoren in Banachverbänden.
Norm-to-weak* continuity of excess demand as a function of prices is proved by using our two-topology variant of Berge's Maximum Theorem. This improves significantly upon an earlier result that, with the extremely strong finite topology on the price space, is of limited interest, except as a vehicle for proving equilibrium existence. With the norm topology on the price space, our demand continuity result becomes useful in applications of equilibrium theory, especially to problems with continuous...
In this paper we define the derivative and the Denjoy integral of mappings from a vector lattice to a complete vector lattice and show the fundamental theorem of calculus.
In a previous paper we defined a Denjoy integral for mappings from a vector lattice to a complete vector lattice. In this paper we define a Henstock-Kurzweil integral for mappings from a vector lattice to a complete vector lattice and consider the relation between these two integrals.
We introduce a seminorm for bounded linear operators between Banach spaces that shows the deviation from the weak Banach-Saks property. We prove that if (Xν) is a sequence of Banach spaces and a Banach sequence lattice E has the Banach-Saks property, then the deviation from the weak Banach-Saks property of an operator of a certain class between direct sums E(Xν) is equal to the supremum of such deviations attained on the coordinates Xν. This is a quantitative version for operators of the result...
We consider majorization problems in the non-commutative setting. More specifically, suppose E and F are ordered normed spaces (not necessarily lattices), and 0 ≤ T ≤ S in B(E,F). If S belongs to a certain ideal (for instance, the ideal of compact or Dunford-Pettis operators), does it follow that T belongs to that ideal as well? We concentrate on the case when E and F are C*-algebras, preduals of von Neumann algebras, or non-commutative function spaces. In particular, we show that, for C*-algebras...