Page 1

Displaying 1 – 20 of 20

Showing per page

C * -algebras of operators in non-archimedean Hilbert spaces

J. Antonio Alvarez (1992)

Commentationes Mathematicae Universitatis Carolinae

We show several examples of n.av̇alued fields with involution. Then, by means of a field of this kind, we introduce “n.aḢilbert spaces” in which the norm comes from a certain hermitian sesquilinear form. We study these spaces and the algebra of bounded operators which are defined on them and have an adjoint. Essential differences with respect to the usual case are observed.

Cauchy multiplication and periodic functions (mod r).

Pentti Haukkanen, R. Sivaramakrishnan (1991)

Collectanea Mathematica

We analise periodic functions (mod r), keeping Cauchy multiplication as the basic tool, and pay particular attention to even functions (mod r) having the property f(n) = f((n,r)) for all n. We provide some new aspects into the Hilbert space structure of even functions (mod r) and make use of linera transformations to interpret the known number-theoretic formulae involving solutions of congruences.

Characterization of Bessel sequences.

M. Laura Arias, Gustavo Corach, Miriam Pacheco (2007)

Extracta Mathematicae

Let H be a separable Hilbert space, L(H) be the algebra of all bounded linear operators of H and Bess(H) be the set of all Bessel sequences of H. Fixed an orthonormal basis E = {ek}k∈N of H, a bijection αE: Bess(H) → L(H) can be defined. The aim of this paper is to characterize α-1E (A) for different classes of operators A ⊆ L(H). In particular, we characterize the Bessel sequences associated to injective operators, compact operators and Schatten p-classes.

Circumcenters in real normed spaces

M. S. Tomás (2005)

Bollettino dell'Unione Matematica Italiana

The study of circumcenters in different types of triangles in real normed spaces gives new characterizations of inner product spaces.

Conservación de convergencias en G(H) por un operador lineal.

M.ª Carmen de las Obras Loscertales y Nasarre (1986)

Stochastica

Given a real separable Hilbert space H, we denote with S = {E(n) | n belongs to N} a sequence of closed linear subspaces of H.In previous papers, the strong, weak, a--> and b--> convergences are defined and characterized. Now, given a sequence S with strong, weak, a--> or b--> limit, and a linear operator of H, A, the sequence AS is studied.

Currently displaying 1 – 20 of 20

Page 1