-measures in Minkowski planes.
The point equation of the associated curve of the indefinite numerical range is derived, following Fiedler’s approach for definite inner product spaces. The classification of the associated curve is presented in the indefinite case, using Newton’s classification of cubic curves. Illustrative examples of all the different possibilities are given. The results obtained extend to Krein spaces results of Kippenhahn on the classical numerical range.
A probabilistic secret sharing scheme is a joint probability distribution of the shares and the secret together with a collection of secret recovery functions. The study of schemes using arbitrary probability spaces and unbounded number of participants allows us to investigate their abstract properties, to connect the topic to other branches of mathematics, and to discover new design paradigms. A scheme is perfect if unqualified subsets have no information on the secret, that is, their total share...
One of the fundamental objectives of the theory of symplectic singularities is to study the symplectic invariants appearing in various geometrical contexts. In the paper we generalize the symplectic cohomological invariant to the class of generalized canonical mappings. We analyze the global structure of Lagrangian Grassmannian in the product symplectic space and describe the local properties of generic symplectic relations.