Description of all regular cones in a Hilbert space.
Given a finite set X⊆ ℝ we characterize the diagonals of self-adjoint operators with spectrum X. Our result extends the Schur-Horn theorem from a finite-dimensional setting to an infinite-dimensional Hilbert space analogous to Kadison's theorem for orthogonal projections (2002) and the second author's result for operators with three-point spectrum (2013).
Soient et deux espaces de Krein de fonctions analytiques dans le disque unité invariants pour l’opérateur de déplacement à gauche et soit un opérateur linéaire continu de dans dont l’adjoint commute avec . Nous étudions les dilatations de qui conservent cette propriété de commutation et pour lesquelles les formes hermitiennes définies par et ont le même nombre de carrés négatifs. Nous obtenons ainsi une version du théorème de dilatation des commutants d’opérateurs dans le cadre...
We study Banach spaces with directionally asymptotically controlled ellipsoid-approximations of the unit ball in finite-dimensional sections. Here these ellipsoids are the unique minimum volume ellipsoids, which contain the unit ball of the corresponding finite-dimensional subspace. The directional control here means that we evaluate the ellipsoids by means of a given functional of the dual space. The term 'asymptotical' refers to the fact that we take 'lim sup' over finite-dimensional subspaces. ...