Page 1

Displaying 1 – 5 of 5

Showing per page

Les topologies sygma-Lebesgue sur C(X).

Belmesnaoui Aqzzouz, Redouane Nouira (2004)

Extracta Mathematicae

We prove that if X is a compact topological space which contains a nontrivial metrizable connected closed subset, then the vector lattice C(X) does not carry any sygma-Lebesgue topology.

Lions-Peetre reiteration formulas for triples and their applications

Irina Asekritova, Natan Krugljak, Lech Maligranda, Lyudmila Nikolova, Lars-Erik Persson (2001)

Studia Mathematica

We present, discuss and apply two reiteration theorems for triples of quasi-Banach function lattices. Some interpolation results for block-Lorentz spaces and triples of weighted L p -spaces are proved. By using these results and a wavelet theory approach we calculate (θ,q)-spaces for triples of smooth function spaces (such as Besov spaces, Sobolev spaces, etc.). In contrast to the case of couples, for which even the scale of Besov spaces is not stable under interpolation, for triples we obtain stability...

Local/global uniform approximation of real-valued continuous functions

Anthony W. Hager (2011)

Commentationes Mathematicae Universitatis Carolinae

For a Tychonoff space X , C ( X ) is the lattice-ordered group ( l -group) of real-valued continuous functions on X , and C * ( X ) is the sub- l -group of bounded functions. A property that X might have is (AP) whenever G is a divisible sub- l -group of C * ( X ) , containing the constant function 1, and separating points from closed sets in X , then any function in C ( X ) can be approximated uniformly over X by functions which are locally in G . The vector lattice version of the Stone-Weierstrass Theorem is more-or-less equivalent...

Currently displaying 1 – 5 of 5

Page 1