Cauchy operator on Bergman space of harmonic functions on unit disk
This paper characterizes the commutant of certain multiplication operators on Hilbert spaces of analytic functions. Let be the operator of multiplication by z on the underlying Hilbert space. We give sufficient conditions for an operator essentially commuting with A and commuting with for some n>1 to be the operator of multiplication by an analytic symbol. This extends a result of Shields and Wallen.
Here we consider when the difference of two composition operators is compact on the weighted Dirichlet spaces . Specifically we study differences of composition operators on the Dirichlet space and S 2, the space of analytic functions whose first derivative is in H 2, and then use Calderón’s complex interpolation to extend the results to the general weighted Dirichlet spaces. As a corollary we consider composition operators induced by linear fractional self-maps of the disk.