Tb theorems for Triebel-Lizorkin spaces over special spaces of homogeneous type and their applications
Page 1 Next
Y. Han (2008)
Collectanea Mathematica
Tullio Valent (1978)
Rendiconti del Seminario Matematico della Università di Padova
Dragoş Iftimie (1999)
Bulletin de la Société Mathématique de France
Bosch, Carlos, Pérez-Esteva, Salvador, Motos, Joaquín (1992)
International Journal of Mathematics and Mathematical Sciences
Lance Smith (1981)
Inventiones mathematicae
Marius Mitrea, Osvaldo Mendez (2000)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Farkas, W. (1999)
Zeitschrift für Analysis und ihre Anwendungen
Ewa Ligocka (1987)
Studia Mathematica
Salvatore Leonardi (1994)
Rendiconti del Seminario Matematico della Università di Padova
Watanabe, Kohtaro, Kametaka, Yoshinori, Yamagishi, Hiroyuki, Nagai, Atsushi, Takemura, Kazuo (2011)
Boundary Value Problems [electronic only]
Geraldo Soares De Souza (1990)
Colloquium Mathematicae
Vladimir Lebedev (2015)
Studia Mathematica
The well-known Bohr-Pál theorem asserts that for every continuous real-valued function f on the circle there exists a change of variable, i.e., a homeomorphism h of onto itself, such that the Fourier series of the superposition f ∘ h converges uniformly. Subsequent improvements of this result imply that actually there exists a homeomorphism that brings f into the Sobolev space . This refined version of the Bohr-Pál theorem does not extend to complex-valued functions. We show that if α < 1/2,...
Heinz O. Cordes, Robert C. McOwen (1977)
Mathematische Zeitschrift
Eiichi Nakai (2006)
Studia Mathematica
We investigate the relations between the Campanato, Morrey and Hölder spaces on spaces of homogeneous type and extend the results of Campanato, Mayers, and Macías and Segovia. The results are new even for the ℝⁿ case. Let (X,d,μ) be a space of homogeneous type and (X,δ,μ) its normalized space in the sense of Macías and Segovia. We also study the relations of these function spaces for (X,d,μ) and for (X,δ,μ). Using these relations, we can show that theorems for the Campanato, Morrey or Hölder spaces...
Litovchenko, V.A. (2004)
Sibirskij Matematicheskij Zhurnal
Winfried Sickel, Leszek Skrzypczak, Jan Vybíral (2014)
Banach Center Publications
We continue our earlier investigations of radial subspaces of Besov and Lizorkin-Triebel spaces on . This time we study characterizations of these subspaces by differences.
Huy-Qui Bui, Mitchell H. Taibleson (2000)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Van Khuong Vu (1988)
Commentationes Mathematicae Universitatis Carolinae
P. L. Lions (1984)
Annales de l'I.H.P. Analyse non linéaire
Pierre-Louis Lions (1985)
Revista Matemática Iberoamericana
This paper is the second part of a work devoted to the study of variational problems (with constraints) in functional spaces defined on domains presenting some (local) form of invariance by a non-compact group of transformations like the dilations in RN. This contains for example the class of problems associated with the determination of extremal functions in inequalities like Sobolev inequalities, convolution or trace inequalities... We show how the concentration-compactness principle and method...
Page 1 Next