Displaying 41 – 60 of 98

Showing per page

Localizations of partial differential operators and surjectivity on real analytic functions

Michael Langenbruch (2000)

Studia Mathematica

Let P(D) be a partial differential operator with constant coefficients which is surjective on the space A(Ω) of real analytic functions on an open set Ω n . Then P(D) admits shifted (generalized) elementary solutions which are real analytic on an arbitrary relatively compact open set ω ⊂ ⊂ Ω. This implies that any localization P m , Θ of the principal part P m is hyperbolic w.r.t. any normal vector N of ∂Ω which is noncharacteristic for P m , Θ . Under additional assumptions P m must be locally hyperbolic.

Non-solvability of the tangential ¯ M -systems

Giuseppe Zampieri (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove that for a real analytic generic submanifold M of C n whose Levi-form has constant rank, the tangential ¯ M -system is non-solvable in degrees equal to the numbers of positive and M negative Levi-eigenvalues. This was already proved in [1] in case the Levi-form is non-degenerate (with M non-necessarily real analytic). We refer to our forthcoming paper [7] for more extensive proofs.

On the diametral dimension of weighted spaces of analytic germs

Michael Langenbruch (2016)

Studia Mathematica

We prove precise estimates for the diametral dimension of certain weighted spaces of germs of holomorphic functions defined on strips near ℝ. This implies a full isomorphic classification for these spaces including the Gelfand-Shilov spaces S ¹ α and S α for α > 0. Moreover we show that the classical spaces of Fourier hyperfunctions and of modified Fourier hyperfunctions are not isomorphic.

On the range of convolution operators on non-quasianalytic ultradifferentiable functions

Jóse Bonet, Antonio Galbis, R. Meise (1997)

Studia Mathematica

Let ( ω ) ( Ω ) denote the non-quasianalytic class of Beurling type on an open set Ω in n . For μ ( ω ) ' ( n ) the surjectivity of the convolution operator T μ : ( ω ) ( Ω 1 ) ( ω ) ( Ω 2 ) is characterized by various conditions, e.g. in terms of a convexity property of the pair ( Ω 1 , Ω 2 ) and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ. Similar conditions characterize the surjectivity of a convolution operator S μ : D ω ' ( Ω 1 ) D ω ' ( Ω 2 ) between ultradistributions of Roumieu type whenever μ ω ' ( n ) . These...

Periodic Boehmians.

Nemzer, Dennis (1989)

International Journal of Mathematics and Mathematical Sciences

Projective representations of spaces of quasianalytic functionals

José Bonet, Reinhold Meise, Sergeĭ N. Melikhov (2004)

Studia Mathematica

The weighted inductive limit of Fréchet spaces of entire functions in N variables which is obtained as the Fourier-Laplace transform of the space of analytic functionals on an open convex subset of N can be described algebraically as the intersection of a family of weighted Banach spaces of entire functions. The corresponding result for the spaces of quasianalytic functionals is also derived.

Currently displaying 41 – 60 of 98