Page 1

Displaying 1 – 7 of 7

Showing per page

A general approximation theorem of Whitney type.

Michael Langenbruch (2003)

RACSAM

We show that Whitney?s approximation theorem holds in a general setting including spaces of (ultra)differentiable functions and ultradistributions. This is used to obtain real analytic modifications for differentiable functions including optimal estimates. Finally, a surjectivity criterion for continuous linear operators between Fréchet sheaves is deduced, which can be applied to the boundary value problem for holomorphic functions and to convolution operators in spaces of ultradifferentiable functions...

A Phragmén-Lindelöf type quasi-analyticity principle

Grzegorz Łysik (1997)

Studia Mathematica

Quasi-analyticity theorems of Phragmén-Lindelöf type for holomorphic functions of exponential type on a half plane are stated and proved. Spaces of Laplace distributions (ultradistributions) on ℝ are studied and their boundary value representation is given. A generalization of the Painlevé theorem is proved.

Currently displaying 1 – 7 of 7

Page 1