A characterization of spectral operators of finite type
Distributional estimates for the Carleson operator acting on characteristic functions of measurable sets of finite measure were obtained by Hunt. In this article we describe a simple method that yields such estimates for general operators acting on one or more functions. As an application we discuss how distributional estimates are obtained for the linear and bilinear Hilbert transform. These distributional estimates show that the square root of the bilinear Hilbert transform is exponentially lntegrable...
We show that Boehmians defined over open sets of ℝⁿ constitute a sheaf. In particular, it is shown that such Boehmians satisfy the gluing property of sheaves over topological spaces.
Automorphic distributions are distributions on , invariant under the linear action of the group . Combs are characterized by the additional requirement of being measures supported in : their decomposition into homogeneous components involves the family , of Eisenstein distributions, and the coefficients of the decomposition are given as Dirichlet series . Functional equations of the usual (Hecke) kind relative to turn out to be equivalent to the invariance of the comb under some modification...