Page 1

Displaying 1 – 11 of 11

Showing per page

Conical measures and properties of a vector measure determined by its range

L. Rodríguez-Piazza, M. Romero-Moreno (1997)

Studia Mathematica

We characterize some properties of a vector measure in terms of its associated Kluvánek conical measure. These characterizations are used to prove that the range of a vector measure determines these properties. So we give new proofs of the fact that the range determines the total variation, the σ-finiteness of the variation and the Bochner derivability, and we show that it also determines the (p,q)-summing and p-nuclear norm of the integration operator. Finally, we show that Pettis derivability...

Convex functions with non-Borel set of Gâteaux differentiability points

Petr Holický, M. Šmídek, Luděk Zajíček (1998)

Commentationes Mathematicae Universitatis Carolinae

We show that on every nonseparable Banach space which has a fundamental system (e.gȯn every nonseparable weakly compactly generated space, in particular on every nonseparable Hilbert space) there is a convex continuous function f such that the set of its Gâteaux differentiability points is not Borel. Thereby we answer a question of J. Rainwater (1990) and extend, in the same time, a former result of M. Talagrand (1979), who gave an example of such a function f on 1 ( 𝔠 ) .

Currently displaying 1 – 11 of 11

Page 1