On some Banach ideals of operators
Some characterizations have been given for the relative compactness of the range of the indefinite Pettis integral of a function on a complete finite measure space with values in a quasicomplete Hausdorff locally convex space. It has been shown that the indefinite Pettis integral has a relatively compact range if the functions is measurable by seminorm. Separation property has been defined for a scalarly measurable function and it has been proved that a function with this property is integrable...
Si Σ es una σ-álgebra y X un espacio localmente convexo se estudian las condiciones para las cuales una medida vectorial σ-aditiva γ : Σ → χ tenga una medida de control μ. Si Σ es la σ-álgebra de Borel de un espacio métrico, se obtienen condiciones necesarias y suficientes usando la τ aditividad de γ. También se dan estos resultados para las polimedidas.
In this paper we introduce and investigate a Henstock-Kurzweil-type integral for Riesz-space-valued functions defined on (not necessarily bounded) subintervals of the extended real line. We prove some basic properties, among them the fact that our integral contains under suitable hypothesis the generalized Riemann integral and that every simple function which vanishes outside of a set of finite Lebesgue measure is integrable according to our definition, and in this case our integral coincides with...
The paper is devoted to a study of some aspects of the theory of (topological) Riesz space valued measures. The main topics considered are the following. First, the problem of existence (and, particularly, the so-called proper existence) of the modulus of an order bounded measure, and its relation to a similar problem for the induced integral operator. Second, the question of how properties of such a measure like countable additivity, exhaustivity or so-called absolute exhaustivity, or the properties...
The classical Bochner integral is compared with the McShane concept of integration based on Riemann type integral sums. It turns out that the Bochner integrable functions form a proper subclass of the set of functions which are McShane integrable provided the Banach space to which the values of functions belong is infinite-dimensional. The Bochner integrable functions are characterized by using gauge techniques. The situation is different in the case of finite-dimensional valued vector functions....