Page 1

Displaying 1 – 2 of 2

Showing per page

Espaces de Sobolev gaussiens

Denis Feyel, A. de La Pradelle (1989)

Annales de l'institut Fourier

Soit μ une mesure gaussienne sur un espace localement convexe E . On donne un nouveau point de vue sur le premier espace de Sobolev W ( E , μ ) construit sur E et μ . La différentielle f ' de f W ( E , μ ) est une fonction de deux variables ( x , y ) E × E , “quasi-linéaire” dans la seconde variable.La différentielle d’une intégrale stochastique est une intégrale stochastique sur E × E muni de μ × μ .On montre que la “procapacité gaussienne” naturelle est une vraie capacité si E est un espace de Banach ou de Fréchet ou le dual faible d’un espace...

Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space

Kun Soo Chang, Dong Hyun Cho, Il Yoo (2004)

Czechoslovak Mathematical Journal

In this paper, we introduce a simple formula for conditional Wiener integrals over C 0 ( 𝔹 ) , the space of abstract Wiener space valued continuous functions. Using this formula, we establish various formulas for a conditional Wiener integral and a conditional Feynman integral of functionals on C 0 ( 𝔹 ) in certain classes which correspond to the classes of functionals on the classical Wiener space introduced by Cameron and Storvick. We also evaluate the conditional Wiener integral and conditional Feynman integral...

Currently displaying 1 – 2 of 2

Page 1