On a class of linear operators.
A certain class of Arens-Michael algebras having no non-zero injective topological ⨶-modules is introduced. This class is rather wide and contains, in particular, algebras of holomorphic functions on polydomains in , algebras of smooth functions on domains in , algebras of formal power series, and, more generally, any nuclear Fréchet-Arens-Michael algebra which has a free bimodule Koszul resolution.
We obtain characterizations of left character amenable Banach algebras in terms of the existence of left ϕ-approximate diagonals and left ϕ-virtual diagonals. We introduce the left character amenability constant and find this constant for some Banach algebras. For all locally compact groups G, we show that the Fourier-Stieltjes algebra B(G) is C-character amenable with C < 2 if and only if G is compact. We prove that if A is a character amenable, reflexive, commutative Banach algebra, then A...
Suppose that A and B are unital Banach algebras with units and , respectively, M is a unital Banach A,B-module, is the triangular Banach algebra, X is a unital -bimodule, , , and . Applying two nice long exact sequences related to A, B, , X, , , and we establish some results on (co)homology of triangular Banach algebras.
In the sequel of the work of H. G. Dales and M. E. Polyakov we give a few more examples of modules over the Banach algebra L¹(G) whose projectivity resp. flatness implies the compactness resp. amenability of the locally compact group G.
We investigate the weak amenability of the Banach algebra ℬ(X) of all bounded linear operators on a Banach space X. Sufficient conditions are given for weak amenability of this and other Banach operator algebras with bounded one-sided approximate identities.
We characterize unitary equivalence of quasi-free Hilbert modules, which complements Douglas and Misra's earlier work [New York J. Math. 11 (2005)]. We first confine our arguments to the classical setting of reproducing Hilbert spaces and then relate our result to equivalence of Hermitian vector bundles.