Closed Ideals in Subalgebras of Banach Algebras II: Ditkin's Condition.
Let be a uniformly closed and locally m-convex -algebra. We obtain internal conditions on stated in terms of its closed ideals for to be isomorphic and homeomorphic to , the -algebra of all the real continuous functions on a normal topological space endowed with the compact convergence topology.
Let ℬ be a Banach algebra of bounded linear operators on a Banach space X. If S is a closed operator in X such that (λ - S)^{-1} ∈ ℬ for some number λ, then S is affiliated with ℬ. The object of this paper is to study the spectral theory and Fredholm theory relative to ℬ of an operator which is affiliated with ℬ. Also, applications are given to semigroups of operators which are contained in ℬ.
Conditions involving closed range of multipliers on general Banach algebras are studied. Numerous conditions equivalent to a splitting A = TA ⊕ kerT are listed, for a multiplier T defined on the Banach algebra A. For instance, it is shown that TA ⊕ kerT = A if and only if there is a commuting operator S for which T = TST and S = STS, that this is the case if and only if such S may be taken to be a multiplier, and that these conditions are also equivalent to the existence of a factorization T = PB,...
There has been a considerable search for radical, amenable Banach algebras. Noncommutative examples were finally found by Volker Runde [R]; here we present the first commutative examples. Centrally placed within the construction, the reader may be pleased to notice a reprise of the undergraduate argument that shows that a normed space with totally bounded unit ball is finite-dimensional; we use the same idea (approximate the norm 1 vector x within distance η by a “good” vector ; then approximate...
In this paper we define the notions of semicommutativity and semicommutativity modulo a linear subspace. We prove some results regarding the semicommutativity or semicommutativity modulo a linear subspace of a sequentially complete m-convex algebra. We show how such results can be applied in order to obtain commutativity criterions for locally m-convex algebras.
The set of commutators in a Banach *-algebra A, with continuous involution, is examined. Applications are made to the case where A = B(ℓ₂), the algebra of all bounded linear operators on ℓ₂.
It is proved that the set Q of quasinilpotent elements in a Banach algebra is an ideal, i.e. equal to the Jacobson radical, if (and only if) the condition [Q,Q] ⊆ Q (or a similar condition concerning anticommutators) holds. In fact, if the inner derivation defined by a quasinilpotent element p maps Q into itself then p ∈ Rad A. Higher commutator conditions of quasinilpotents are also studied. It is shown that if a Banach algebra satisfies such a condition, then every quasinilpotent element has some...
Various topics concerning compact elementary operators on Banach algebras are studied: their ranges, their coefficients, and the structure of algebras having nontrivial compact elementary operators. In the first part of the paper we consider separately elementary operators of certain simple types. In the second part we obtain our main results which deal with general elementary operators.
We consider the compactness of derivations from commutative Banach algebras into their dual modules. We show that if there are no compact derivations from a commutative Banach algebra, A, into its dual module, then there are no compact derivations from A into any symmetric A-bimodule; we also prove analogous results for weakly compact derivations and for bounded derivations of finite rank. We then characterise the compact derivations from the convolution algebra ℓ¹(ℤ₊) to its dual. Finally, we give...
Compatible topologies and bornologies on modules are introduced and studied.