Loading [MathJax]/extensions/MathZoom.js
This is an expository paper on the importance and applications of GB*-algebras in the theory of unbounded operators, which is closely related to quantum field theory and quantum mechanics. After recalling the definition and the main examples of GB*-algebras we exhibit their most important properties. Then, through concrete examples we are led to a question concerning the structure of the completion of a given C*-algebra 𝓐₀[||·||₀], under a locally convex *-algebra topology τ, making the multiplication...
The aim of this paper is to characterize a class of subspectra for which the geometric spectral radius is the same and depends only upon a commuting -tuple of elements of a complex Banach algebra. We prove also that all these subspectra have the same capacity.
Let be a continuous map of the closure of the open unit disc of into a unital associative Banach algebra , whose restriction to is holomorphic, and which satisfies the condition whereby for all and whenever (where is the spectrum of any ). One of the basic results of the present paper is that is , that is to say, is then a compact subset of that does not depend on for all . This fact will be applied to holomorphic self-maps of the open unit ball of some -algebra...
In 1964, Bertram Yood posed the following problem: whether the intersection of all closed maximal regular left ideals of a topological ring coincides with the intersection of all closed maximal regular right ideals of this ring. It is proved that these two intersections coincide for advertive and simplicial topological rings and, using this result, it is shown that the topological left radical and the topological right radical for every advertive and simplicial topological algebra coincide.
Let 𝒜 be a Banach algebra over ℂ with unit 1 and 𝑓: ℂ → ℂ an entire function. Let 𝐟: 𝒜 → 𝒜 be defined by
𝐟(a) = 𝑓(a) (a ∈ 𝒜),
where 𝑓(a) is given by the usual analytic calculus. The connections between the periods of 𝑓 and the periods of 𝐟 are settled by a theorem of E. Vesentini. We give a new proof of this theorem and investigate further properties of periods of 𝐟, for example in C*-algebras.
Given a locally convex space (V,Γ), we find (all) the multiplications π on V (associative or not) such that the algebra A ≡ (V,π,Γ) becomes (i) A-convex, (ii) lm-convex.
A certain class of Arens-Michael algebras having no non-zero injective topological ⨶-modules is introduced. This class is rather wide and contains, in particular, algebras of holomorphic functions on polydomains in , algebras of smooth functions on domains in , algebras of formal power series, and, more generally, any nuclear Fréchet-Arens-Michael algebra which has a free bimodule Koszul resolution.
Given Banach algebras A and B with spectrum σ(B) ≠ ∅, and given θ ∈ σ(B), we define a product , which is a strongly splitting Banach algebra extension of B by A. We obtain characterizations of bounded approximate identities, spectrum, topological center, minimal idempotents, and study the ideal structure of these products. By assuming B to be a Banach algebra in ₀(X) whose spectrum can be identified with X, we apply our results to harmonic analysis, and study the question of spectral synthesis,...
Currently displaying 1 –
20 of
131