On Banach *-algebras without the unit
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Page 1
Dina Štěrbová (1979)
Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika
Nasanbujangijn Namsraj (1977)
Commentationes Mathematicae Universitatis Carolinae
Peter Šemrl (1990)
Colloquium Mathematicae
Yannis Tsertos (2005)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Abel, Mart, Abel, Mati (2010)
Banach Journal of Mathematical Analysis [electronic only]
Dina Štěrbová (1983)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Dina Štěrbová (1986)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Dina Štěrbová (1978)
Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika
Dina Štěrbová (1977)
Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika
Dina Štěrbová (1988)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
P. A. Dabhi, H. V. Dedania (2009)
Studia Mathematica
We prove that a semisimple, commutative Banach algebra has either exactly one uniform norm or infinitely many uniform norms; this answers a question asked by S. J. Bhatt and H. V. Dedania [Studia Math. 160 (2004)]. A similar result is proved for C*-norms on *-semisimple, commutative Banach *-algebras. These properties are preserved if the identity is adjoined. We also show that a commutative Beurling *-algebra L¹(G,ω) has exactly one uniform norm if and only if it has exactly one C*-norm; this is...
Page 1