Displaying 21 – 40 of 174

Showing per page

Bounded elements and spectrum in Banach quasi *-algebras

Camillo Trapani (2006)

Studia Mathematica

A normal Banach quasi *-algebra (,) has a distinguished Banach *-algebra b consisting of bounded elements of . The latter *-algebra is shown to coincide with the set of elements of having finite spectral radius. If the family () of bounded invariant positive sesquilinear forms on contains sufficiently many elements then the Banach *-algebra of bounded elements can be characterized via a C*-seminorm defined by the elements of ().

Commutators in Banach *-algebras

Bertram Yood (2008)

Studia Mathematica

The set of commutators in a Banach *-algebra A, with continuous involution, is examined. Applications are made to the case where A = B(ℓ₂), the algebra of all bounded linear operators on ℓ₂.

C*-seminorms

Bertram Yood (1996)

Studia Mathematica

A necessary and sufficient condition is given for a*-algebra with identity to have a unique maximal C*-seminorm. This generalizes the result, due to Bonsall, that a Banach *-algebra with identity has such a*-seminorm.

Currently displaying 21 – 40 of 174