Displaying 221 – 240 of 856

Showing per page

Extrapolation of Sobolev imbeddings.

M. Krbec (1997)

Collectanea Mathematica

We survey recent results on limiting imbeddings [sic] of Sobolev spaces, particularly, those concerning weakening of assumptions on integrability of derivatives, considering spaces with dominating mixed derivatives and the case of weighted spaces.

Extrapolation theory for the real interpolation method.

María J. Carro, Joaquim Martín (2002)

Collectanea Mathematica

We develop an abstract extrapolation theory for the real interpolation method that covers and improves the most recent versions of the celebrated theorems of Yano and Zygmund. As a consequence of our method, we give new endpoint estimates of the embedding Sobolev theorem for an arbitrary domain Omega.

Finite sums and products of commutators in inductive limit C * -algebras

Klaus Thomsen (1993)

Annales de l'institut Fourier

Results of T. Fack, P. de la Harpe and G. Skandalis concerning the internal structure of simple A F -algebras are extended to C * -algebras that are inductive limits of finite direct sums of homogeneous C * -algebras. The generalizations are obtained with slightly varying assumptions on the building blocks, but all results are applicable to unital simple inductive limits of finite direct sums of circle algebras.

Fréchet interpolation spaces and Grothendieck operator ideals.

Jesús M. Fernández Castillo (1991)

Collectanea Mathematica

Starting with a continuous injection I: X → Y between Banach spaces, we are interested in the Fréchet (non Banach) space obtained as the reduced projective limit of the real interpolation spaces. We study relationships among the pertenence of I to an operator ideal and the pertenence of the given interpolation space to the Grothendieck class generated by that ideal.

Currently displaying 221 – 240 of 856