Projections from a von Neumann algebra onto a subalgebra
The investigation of the structure of biprojective Banach algebras with non-trivial radical [3] forces the author to suppose that the idea of projective cover, which is important in Ring Theory, can be effectively applied to Banach algebras and modules. But, in fact, the structural results on biprojectivity can be easier obtained without projective covers, so there are no references to this matter in [3]. Projective covers of Banach modules are considered in the present article. Except some assertions...
In a recent paper, Carlson, Foiaş, Williams and the author proved that isometric Hilbert modules are projective in the category of Hilbert modules similar to contractive ones. In this paper, a simple proof, based on a strengthened lifting theorem, is given. The proof also applies to an equivalent theorem of Foiaş and Williams on similarity to a contraction of a certain 2 × 2 operator matrix.