Minimax nonparametric hypothesis testing for ellipsoids and Besov bodies
We observe an infinitely dimensional Gaussian random vector x = ξ + v where ξ is a sequence of standard Gaussian variables and v ∈ l2 is an unknown mean. We consider the hypothesis testing problem H0 : v = 0versus alternatives for the sets . The sets Vε are lq-ellipsoids of semi-axes ai = i-s R/ε with lp-ellipsoid of semi-axes bi = i-r pε/ε removed or similar Besov bodies Bq,t;s (R/ε) with Besov bodies Bp,h;r (pε/ε) removed. Here or are the parameters which define the sets Vε for given radii...
We consider the problem of estimating an unknown regression function when the design is random with values in . Our estimation procedure is based on model selection and does not rely on any prior information on the target function. We start with a collection of linear functional spaces and build, on a data selected space among this collection, the least-squares estimator. We study the performance of an estimator which is obtained by modifying this least-squares estimator on a set of small probability....
We consider the problem of estimating an unknown regression function when the design is random with values in . Our estimation procedure is based on model selection and does not rely on any prior information on the target function. We start with a collection of linear functional spaces and build, on a data selected space among this collection, the least-squares estimator. We study the performance of an estimator which is obtained by modifying this least-squares estimator on a set of small...