Page 1

Displaying 1 – 18 of 18

Showing per page

Canonical commutation relations and interacting Fock spaces

Zied Ammari (2004)

Journées Équations aux dérivées partielles

We introduce by means of reproducing kernel theory and decomposition in orthogonal polynomials canonical correspondences between an interacting Fock space a reproducing kernel Hilbert space and a square integrable functions space w.r.t. a cylindrical measure. Using this correspondences we investigate the structure of the infinite dimensional canonical commutation relations. In particular we construct test functions spaces, distributions spaces and a quantization map which generalized the work of...

Characterization of surjective convolution operators on Sato's hyperfunctions

Michael Langenbruch (2010)

Banach Center Publications

Let μ ( d ) ' be an analytic functional and let T μ be the corresponding convolution operator on Sato’s space ( d ) of hyperfunctions. We show that T μ is surjective iff T μ admits an elementary solution in ( d ) iff the Fourier transform μ̂ satisfies Kawai’s slowly decreasing condition (S). We also show that there are 0 μ ( d ) ' such that T μ is not surjective on ( d ) .

Confining quantum particles with a purely magnetic field

Yves Colin de Verdière, Françoise Truc (2010)

Annales de l’institut Fourier

We consider a Schrödinger operator with a magnetic field (and no electric field) on a domain in the Euclidean space with a compact boundary. We give sufficient conditions on the behaviour of the magnetic field near the boundary which guarantees essential self-adjointness of this operator. From the physical point of view, it means that the quantum particle is confined in the domain by the magnetic field. We construct examples in the case where the boundary is smooth as well as for polytopes; These...

Currently displaying 1 – 18 of 18

Page 1