Local analysis of nonstandard functions of pre-distributional type
We prove that every bounded, uniformly separated sequence in a normed space contains a “uniformly independent” subsequence (see definition); the constants involved do not depend on the sequence or the space. The finite version of this result is true for all quasinormed spaces. We give a counterexample to the infinite version in for each 0 < p < 1. Some consequences for nonstandard topological vector spaces are derived.