Loading [MathJax]/extensions/MathZoom.js
Displaying 181 –
200 of
654
The general ordinary quasi-differential expression M of n-th order
with complex coefficients and its formal adjoint M + are considered over
a regoin (a, b) on the real line, −∞ ≤ a < b ≤ ∞, on which the operator
may have a finite number of singular points. By considering M over various
subintervals on which singularities occur only at the ends, restrictions of the
maximal operator generated by M in L2|w (a, b) which are regularly solvable
with respect to the minimal operators T0 (M ) and T0...
Let be a positive Borel measure on the complex plane and let with . We study the generalized Toeplitz operators on the Fock space . We prove that is bounded (or compact) on if and only if is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for to be in the Schatten -class for .
We discuss Fredholm pairs of subspaces and associated Grassmannians in a Hilbert space. Relations between several existing definitions of Fredholm pairs are established as well as some basic geometric properties of the Kato Grassmannian. It is also shown that the so-called restricted Grassmannian can be endowed with a natural Fredholm structure making it into a Fredholm Hilbert manifold.
This expository article deals with results surrounding the following question: Which pairs of Banach algebras A and B have the property that every unital invertibility preserving linear map from A to B is a Jordan homomorphism?
We transform the concept of p-summing operators, 1≤ p < ∞, to the more general setting of nonlinear Banach space operators. For 1-summing operators on B(Σ,X)-spaces having weak integral representations we generalize the Grothendieck-Pietsch domination principle. This is applied for the characterization of 1-summing Hammerstein operators on C(S,X)-spaces. For p-summing Hammerstein operators we derive the existence of control measures and p-summing extensions to B(Σ,X)-spaces.
Let Ω be an open subset of ℝⁿ. Let L² = L²(Ω,dx) and H¹₀ = H¹₀(Ω) be the standard Lebesgue and Sobolev spaces of complex-valued functions. The aim of this paper is to study the group of invertible operators on H¹₀ which preserve the L²-inner product. When Ω is bounded and ∂Ω is smooth, this group acts as the intertwiner of the H¹₀ solutions of the non-homogeneous Helmholtz equation u - Δu = f, . We show that is a real Banach-Lie group, whose Lie algebra is (i times) the space of symmetrizable operators....
A family T(ν), ν ∈ ℝ, of semiinfinite positive Jacobi matrices is introduced with matrix entries taken from the Hahn-Exton q-difference equation. The corresponding matrix operators defined on the linear hull of the canonical basis in ℓ2(ℤ+) are essentially self-adjoint for |ν| ≥ 1 and have deficiency indices (1, 1) for |ν| < 1. A convenient description of all self-adjoint extensions is obtained and the spectral problem is analyzed in detail. The spectrum is discrete and the characteristic equation...
The harmonic Cesàro operator is defined for a function f in for some 1 ≤ p < ∞ by setting for x > 0 and for x < 0; the harmonic Copson operator ℂ* is defined for a function f in by setting for x ≠ 0. The notation indicates that ℂ and ℂ* are adjoint operators in a certain sense.
We present rigorous proofs of the following two commuting relations:
(i) If for some 1 ≤ p ≤ 2, then a.e., where f̂ denotes the Fourier transform of f.
(ii) If for some 1 < p ≤ 2, then a.e.
As...
Currently displaying 181 –
200 of
654