Loading [MathJax]/extensions/MathZoom.js
Displaying 21 –
40 of
311
We obtain an existence-uniqueness result for
a second order Neumann boundary value problem including cases
where the nonlinearity possibly crosses several points of
resonance. Optimal and Schauder fixed points methods are used to
prove this kind of results.
The Nevanlinna algebras, , of this paper are the variants of classical weighted area Nevanlinna classes of analytic functions on = z ∈ ℂ: |z| < 1. They are F-algebras, neither locally bounded nor locally convex, with a rich duality structure.
For s = (α+2)/p, the algebra of analytic functions f: → ℂ such that as |z| → 1 is the Fréchet envelope of . The corresponding algebra of analytic f: → ℂ such that is a complete metric space but fails to be a topological vector space. is also...
Let be a holomorphic function and a holomorphic self-map of the open unit disk in the complex plane. We provide new characterizations for the boundedness of the weighted composition operators from Zygmund type spaces to Bloch type spaces in in terms of , , their derivatives, and , the -th power of . Moreover, we obtain some similar estimates for the essential norms of the operators , from which sufficient and necessary conditions of compactness of follows immediately.
In this paper, we introduce a new class of boundary value problem for nonlinear fractional differential equations involving the Erdélyi-Kober differential operator on an infinite interval. Existence and uniqueness results for a positive solution of the given problem are obtained by using the Banach contraction principle, the Leray-Schauder nonlinear alternative, and Guo-Krasnosel'skii fixed point theorem in a special Banach space. To that end, some examples are presented to illustrate the usefulness...
We consider the operator on a complex Hilbert space, where is positive self-adjoint and is self-adjoint, and where, moreover, « is comparable to , », in a technical sense. Two applications are given.
Let ψ and φ be analytic functions on the open unit disk with φ() ⊆ . We give new characterizations of the bounded and compact weighted composition operators W ψ,ϕ from the Hardy spaces H p, 1 ≤ p ≤ ∞, the Bloch space B, the weighted Bergman spaces A αp, α > − 1,1 ≤ p < ∞, and the Dirichlet space to the Bloch space in terms of boundedness (respectively, convergence to 0) of the Bloch norms of W ψ,ϕ f for suitable collections of functions f in the respective spaces. We also obtain characterizations...
We consider a Hardy-type inequality with Oinarov's kernel in weighted Lebesgue spaces. We give new equivalent conditions for satisfying the inequality, and provide lower and upper estimates for its best constant. The findings are crucial in the study of oscillation and non-oscillation properties of differential equation solutions, as well as spectral properties.
This paper is a continuation of Y. Liu, Anti-periodic solutions of nonlinear first order impulsive functional differential equations, Math. Slovaca 62 (2012), 695–720. By using Schaefer's fixed point theorem, new existence results on anti-periodic solutions of a class of nonlinear impulsive functional differential equations are established. The techniques to get the priori estimates of the possible solutions of the mentioned equations are different from those used in known papers. An example is...
A class of nonlinear boundary value problems for p-Laplacian differential equations is studied. Sufficient conditions for the existence of solutions are established. The nonlinearities are allowed to be superlinear. We do not apply the Green's functions of the relevant problem and the methods of obtaining a priori bounds for solutions are different from known ones. Examples that cannot be covered by known results are given to illustrate our theorems.
Currently displaying 21 –
40 of
311