Displaying 1001 – 1020 of 1576

Showing per page

On the growth of analytic semigroups along vertical lines

José Galé, Thomas Ransford (2000)

Studia Mathematica

We construct two Banach algebras, one which contains analytic semigroups ( a z ) R e z > 0 such that | a 1 + i y | arbitrarily slowly as | y | , the other which contains ones such that | a 1 + i y | arbitrarily fast

On the growth of Sobolev norms for the cubic Szegő equation

Patrick Gérard, Sandrine Grellier (2014/2015)

Séminaire Laurent Schwartz — EDP et applications

We report on a recent result establishing that trajectories of the cubic Szegő equation in Sobolev spaces with high regularity are generically unbounded, and moreover that, on solutions generated by suitable bounded subsets of initial data, every polynomial bound in time fails for high Sobolev norms. The proof relies on an instability phenomenon for a new nonlinear Fourier transform describing explicitly the solutions to the initial value problem, which is inherited from the Lax pair structure enjoyed...

On the growth of the resolvent operators for power bounded operators

Olavi Nevanlinna (1997)

Banach Center Publications

Outline. In this paper I discuss some quantitative aspects related to power bounded operators T and to the decay of T n ( T - 1 ) . For background I refer to two recent surveys J. Zemánek [1994], C. J. K. Batty [1994]. Here I try to complement these two surveys in two different directions. First, if the decay of T n ( T - 1 ) is as fast as O(1/n) then quite strong conclusions can be made. The situation can be thought of as a discrete version of analytic semigroups; I try to motivate this in Section 1 by demonstrating the...

On the Halley method in Banach spaces

Ioannis K. Argyros, Hongmin Ren (2012)

Applicationes Mathematicae

We provide a semilocal convergence analysis for Halley's method using convex majorants in order to approximate a locally unique solution of a nonlinear operator equation in a Banach space setting. Our results reduce and improve earlier ones in special cases.

On the Hardy-type integral operators in Banach function spaces.

Elena Lomakina, Vladimir Stepanov (1998)

Publicacions Matemàtiques

Characterization of the mapping properties such as boundedness, compactness, measure of non-compactness and estimates of the approximation numbers of Hardy-type integral operators in Banach function spaces are given.

On the H-property and rotundity of Cesàro direct sums of Banach spaces

Saard Youyen, Suthep Suantai (2008)

Banach Center Publications

In this paper, we define the direct sum ( i = 1 n X i ) c e s p of Banach spaces X₁,X₂,..., and Xₙ and consider it equipped with the Cesàro p-norm when 1 ≤ p < ∞. We show that ( i = 1 n X i ) c e s p has the H-property if and only if each X i has the H-property, and ( i = 1 n X i ) c e s p has the Schur property if and only if each X i has the Schur property. Moreover, we also show that ( i = 1 n X i ) c e s p is rotund if and only if each X i is rotund.

Currently displaying 1001 – 1020 of 1576