On the geometric characterization of differentiability. I.
We construct two Banach algebras, one which contains analytic semigroups such that arbitrarily slowly as , the other which contains ones such that arbitrarily fast
We report on a recent result establishing that trajectories of the cubic Szegő equation in Sobolev spaces with high regularity are generically unbounded, and moreover that, on solutions generated by suitable bounded subsets of initial data, every polynomial bound in time fails for high Sobolev norms. The proof relies on an instability phenomenon for a new nonlinear Fourier transform describing explicitly the solutions to the initial value problem, which is inherited from the Lax pair structure enjoyed...
Outline. In this paper I discuss some quantitative aspects related to power bounded operators T and to the decay of . For background I refer to two recent surveys J. Zemánek [1994], C. J. K. Batty [1994]. Here I try to complement these two surveys in two different directions. First, if the decay of is as fast as O(1/n) then quite strong conclusions can be made. The situation can be thought of as a discrete version of analytic semigroups; I try to motivate this in Section 1 by demonstrating the...
We provide a semilocal convergence analysis for Halley's method using convex majorants in order to approximate a locally unique solution of a nonlinear operator equation in a Banach space setting. Our results reduce and improve earlier ones in special cases.
Characterization of the mapping properties such as boundedness, compactness, measure of non-compactness and estimates of the approximation numbers of Hardy-type integral operators in Banach function spaces are given.
In this paper, we define the direct sum of Banach spaces X₁,X₂,..., and Xₙ and consider it equipped with the Cesàro p-norm when 1 ≤ p < ∞. We show that has the H-property if and only if each has the H-property, and has the Schur property if and only if each has the Schur property. Moreover, we also show that is rotund if and only if each is rotund.