Displaying 1081 – 1100 of 1576

Showing per page

On the multiplication operators on spaces of analytic functions

B. Yousefi, S. Foroutan (2005)

Studia Mathematica

We consider Hilbert spaces of analytic functions on a plane domain Ω and multiplication operators on such spaces induced by functions from H ( Ω ) . Recently, K. Zhu has given conditions under which the adjoints of multiplication operators on Hilbert spaces of analytic functions belong to the Cowen-Douglas classes. In this paper, we provide some sufficient conditions which give the converse of the main result obtained by K. Zhu. We also characterize the commutant of certain multiplication operators.

On the multiplicity function of ergodic group extensions, II

Jakub Kwiatkowski, Mariusz Lemańczyk (1995)

Studia Mathematica

For an arbitrary set A + containing 1, an ergodic automorphism T whose set of essential values of the multiplicity function is equal to A is constructed. If A is additionally finite, T can be chosen to be an analytic diffeomorphism on a finite-dimensional torus.

On the necessity of gaps

Hiroshi Matano, Paul Rabinowitz (2006)

Journal of the European Mathematical Society

Recent papers have studied the existence of phase transition solutions for Allen–Cahn type equations. These solutions are either single or multi-transition spatial heteroclinics or homoclinics between simpler equilibrium states. A sufficient condition for the construction of the multitransition solutions is that there are gaps in the ordered set of single transition solutions. In this paper we explore the necessity of these gap conditions.

On the Neumann-Poincaré operator

Josef Král, Dagmar Medková (1998)

Czechoslovak Mathematical Journal

Let Γ be a rectifiable Jordan curve in the finite complex plane which is regular in the sense of Ahlfors and David. Denote by L C 2 ( Γ ) the space of all complex-valued functions on Γ which are square integrable w.r. to the arc-length on Γ . Let L 2 ( Γ ) stand for the space of all real-valued functions in L C 2 ( Γ ) and put L 0 2 ( Γ ) = { h L 2 ( Γ ) Γ h ( ζ ) | d ζ | = 0 } . Since the Cauchy singular operator is bounded on L C 2 ( Γ ) , the Neumann-Poincaré operator C 1 Γ sending each h L 2 ( Γ ) into C 1 Γ h ( ζ 0 ) : = ( π i ) - 1 P . V . Γ h ( ζ ) ζ - ζ 0 d ζ , ζ 0 Γ , is bounded on L 2 ( Γ ) . We show that the inclusion C 1 Γ ( L 0 2 ( Γ ) ) L 0 2 ( Γ ) characterizes the circle in the class of all...

On the Newton-Kantorovich theorem and nonlinear finite element methods

Ioannis K. Argyros (2009)

Applicationes Mathematicae

Using a weaker version of the Newton-Kantorovich theorem, we provide a discretization result to find finite element solutions of elliptic boundary value problems. Our hypotheses are weaker and under the same computational cost lead to finer estimates on the distances involved and a more precise information on the location of the solution than before.

On the nonlinear Neumann problem at resonance with critical Sobolev nonlinearity

J. Chabrowski, Shusen Yan (2002)

Colloquium Mathematicae

We consider the Neumann problem for the equation - Δ u - λ u = Q ( x ) | u | 2 * - 2 u , u ∈ H¹(Ω), where Q is a positive and continuous coefficient on Ω̅ and λ is a parameter between two consecutive eigenvalues λ k - 1 and λ k . Applying a min-max principle based on topological linking we prove the existence of a solution.

On the nonlocal Cauchy problem for semilinear fractional order evolution equations

JinRong Wang, Yong Zhou, Michal Fečkan (2014)

Open Mathematics

In this paper, we develop the approach and techniques of [Boucherif A., Precup R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 2007, 16(3), 507–516], [Zhou Y., Jiao F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinar Anal. Real World Appl., 2010, 11(5), 4465–4475] to deal with nonlocal Cauchy problem for semilinear fractional order evolution equations. We present two new sufficient conditions on existence of mild solutions. The first...

On the norm of a projection onto the space of compact operators

Joosep Lippus, Eve Oja (2007)

Studia Mathematica

Let X and Y be Banach spaces and let 𝓐(X,Y) be a closed subspace of 𝓛(X,Y), the Banach space of bounded linear operators from X to Y, containing the subspace 𝒦(X,Y) of compact operators. We prove that if Y has the metric compact approximation property and a certain geometric property M*(a,B,c), where a,c ≥ 0 and B is a compact set of scalars (Kalton's property (M*) = M*(1, {-1}, 1)), and if 𝓐(X,Y) ≠ 𝒦(X,Y), then there is no projection from 𝓐(X,Y) onto 𝒦(X,Y) with norm less than max|B| + c....

On the norm-closure of the class of hypercyclic operators

Christoph Schmoeger (1997)

Annales Polonici Mathematici

Let T be a bounded linear operator acting on a complex, separable, infinite-dimensional Hilbert space and let f: D → ℂ be an analytic function defined on an open set D ⊆ ℂ which contains the spectrum of T. If T is the limit of hypercyclic operators and if f is nonconstant on every connected component of D, then f(T) is the limit of hypercyclic operators if and only if f ( σ W ( T ) ) z : | z | = 1 is connected, where σ W ( T ) denotes the Weyl spectrum of T.

Currently displaying 1081 – 1100 of 1576