On perturbations of differentiate semigroups.
We give new results on square functionsassociated to a sectorial operator on for . Under the assumption that is actually -sectorial, we prove equivalences of the form for suitable functions . We also show that has a bounded functional calculus with respect to . Then we apply our results to the study of conditions under which we have an estimate , when generates a bounded semigroup on and is a linear mapping.
We study positive linear Volterra integro-differential equations in Banach lattices. A characterization of positive equations is given. Furthermore, an explicit spectral criterion for uniformly asymptotic stability of positive equations is presented. Finally, we deal with problems of robust stability of positive systems under structured perturbations. Some explicit stability bounds with respect to these perturbations are given.
We consider one-parameter (C₀)-semigroups of operators in the space with infinitesimal generator of the form where G is an -valued rapidly decreasing distribution on ℝⁿ. It is proved that the Petrovskiĭ condition for forward evolution ensures not only the existence and uniqueness of the above semigroup but also its nice behaviour after restriction to whichever of the function spaces , , p ∈ [1,∞], , a ∈ ]0,∞[, or the spaces , q ∈ ]1,∞], of bounded distributions.
2000 Mathematics Subject Classification: 47A45.An estimation of the growth of a non-contracting semigroup Zt = exp(itA) where A is a non-dissipative operator with a two-dimensional imaginary component is given. Estimation is given in terms of the functional model in de Branges space.
We prove existence and uniqueness of classical solutions for an incomplete second-order abstract Cauchy problem associated with operators which have polynomially bounded resolvent. Some examples of differential operators to which our abstract result applies are also included.
A characterization of exponentially dichotomic and exponentially stable -semigroups in terms of solutions of an operator equation of Lyapunov type is presented. As a corollary a new and shorter proof of van Neerven’s recent characterization of exponential stability in terms of boundedness of convolutions of a semigroup with almost periodic functions is given.