Displaying 41 – 60 of 61

Showing per page

On the nonlocal Cauchy problem for semilinear fractional order evolution equations

JinRong Wang, Yong Zhou, Michal Fečkan (2014)

Open Mathematics

In this paper, we develop the approach and techniques of [Boucherif A., Precup R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 2007, 16(3), 507–516], [Zhou Y., Jiao F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinar Anal. Real World Appl., 2010, 11(5), 4465–4475] to deal with nonlocal Cauchy problem for semilinear fractional order evolution equations. We present two new sufficient conditions on existence of mild solutions. The first...

On the positivity of semigroups of operators

Roland Lemmert, Peter Volkmann (1998)

Commentationes Mathematicae Universitatis Carolinae

In a Banach space E , let U ( t ) ( t > 0 ) be a C 0 -semigroup with generating operator A . For a cone K E ...

On the range of a closed operator in an L 1 -space of vector-valued functions

Ryotaro Sato (2005)

Commentationes Mathematicae Universitatis Carolinae

Let X be a reflexive Banach space and A be a closed operator in an L 1 -space of X -valued functions. Then we characterize the range R ( A ) of A as follows. Let 0 λ n ρ ( A ) for all 1 n < , where ρ ( A ) denotes the resolvent set of A , and assume that lim n λ n = 0 and sup n 1 λ n ( λ n - A ) - 1 < . Furthermore, assume that there exists λ ρ ( A ) such that λ ( λ - A ) - 1 1 . Then f R ( A ) is equivalent to sup n 1 ( λ n - A ) - 1 f 1 < . This generalizes Shaw’s result for scalar-valued functions.

On the Schrödinger heat kernel in horn-shaped domains

Gabriele Grillo (2004)

Colloquium Mathematicae

We prove pointwise lower bounds for the heat kernel of Schrödinger semigroups on Euclidean domains under Dirichlet boundary conditions. The bounds take into account non-Gaussian corrections for the kernel due to the geometry of the domain. The results are applied to prove a general lower bound for the Schrödinger heat kernel in horn-shaped domains without assuming intrinsic ultracontractivity for the free heat semigroup.

On the spectral properties of translation operators in one-dimensional tubes

Wojciech Hyb (1991)

Annales Polonici Mathematici

We study the spectral properties of some group of unitary operators in the Hilbert space of square Lebesgue integrable holomorphic functions on a one-dimensional tube (see formula (1)). Applying the Genchev transform ([2], [5]) we prove that this group has continuous simple spectrum (Theorem 4) and that the projection-valued measure for this group has a very explicit form (Theorem 5).

One-parameter semigroups in the convolution algebra of rapidly decreasing distributions

(2012)

Colloquium Mathematicae

The paper is devoted to infinitely differentiable one-parameter convolution semigroups in the convolution algebra C ' ( ; M m × m ) of matrix valued rapidly decreasing distributions on ℝⁿ. It is proved that G C ' ( ; M m × m ) is the generating distribution of an i.d.c.s. if and only if the operator t m × m - G on 1 + n satisfies the Petrovskiĭ condition for forward evolution. Some consequences are discussed.

Operator theoretic properties of semigroups in terms of their generators

S. Blunck, L. Weis (2001)

Studia Mathematica

Let ( T t ) be a C₀ semigroup with generator A on a Banach space X and let be an operator ideal, e.g. the class of compact, Hilbert-Schmidt or trace class operators. We show that the resolvent R(λ,A) of A belongs to if and only if the integrated semigroup S t : = 0 t T s d s belongs to . For analytic semigroups, S t implies T t , and in this case we give precise estimates for the growth of the -norm of T t (e.g. the trace of T t ) in terms of the resolvent growth and the imbedding D(A) ↪ X.

Optimal time and space regularity for solutions of degenerate differential equations

Alberto Favaron (2009)

Open Mathematics

We derive optimal regularity, in both time and space, for solutions of the Cauchy problem related to a degenerate differential equation in a Banach space X. Our results exhibit a sort of prevalence for space regularity, in the sense that the higher is the order of regularity with respect to space, the lower is the corresponding order of regularity with respect to time.

Currently displaying 41 – 60 of 61