On the mild solutions of higher-order differential equations in Banach spaces.
In this paper, we develop the approach and techniques of [Boucherif A., Precup R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 2007, 16(3), 507–516], [Zhou Y., Jiao F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinar Anal. Real World Appl., 2010, 11(5), 4465–4475] to deal with nonlocal Cauchy problem for semilinear fractional order evolution equations. We present two new sufficient conditions on existence of mild solutions. The first...
In a Banach space , let be a -semigroup with generating operator . For a cone ...
Let be a reflexive Banach space and be a closed operator in an -space of -valued functions. Then we characterize the range of as follows. Let for all , where denotes the resolvent set of , and assume that and . Furthermore, assume that there exists such that . Then is equivalent to . This generalizes Shaw’s result for scalar-valued functions.
We prove pointwise lower bounds for the heat kernel of Schrödinger semigroups on Euclidean domains under Dirichlet boundary conditions. The bounds take into account non-Gaussian corrections for the kernel due to the geometry of the domain. The results are applied to prove a general lower bound for the Schrödinger heat kernel in horn-shaped domains without assuming intrinsic ultracontractivity for the free heat semigroup.
We give several conditions implying that the spectral bound of the generator of a -semigroup is negative. Applications to stability theory are considered.
We study the spectral properties of some group of unitary operators in the Hilbert space of square Lebesgue integrable holomorphic functions on a one-dimensional tube (see formula (1)). Applying the Genchev transform ([2], [5]) we prove that this group has continuous simple spectrum (Theorem 4) and that the projection-valued measure for this group has a very explicit form (Theorem 5).
The paper is devoted to infinitely differentiable one-parameter convolution semigroups in the convolution algebra of matrix valued rapidly decreasing distributions on ℝⁿ. It is proved that is the generating distribution of an i.d.c.s. if and only if the operator on satisfies the Petrovskiĭ condition for forward evolution. Some consequences are discussed.
Let be a C₀ semigroup with generator A on a Banach space X and let be an operator ideal, e.g. the class of compact, Hilbert-Schmidt or trace class operators. We show that the resolvent R(λ,A) of A belongs to if and only if the integrated semigroup belongs to . For analytic semigroups, implies , and in this case we give precise estimates for the growth of the -norm of (e.g. the trace of ) in terms of the resolvent growth and the imbedding D(A) ↪ X.
We derive optimal regularity, in both time and space, for solutions of the Cauchy problem related to a degenerate differential equation in a Banach space X. Our results exhibit a sort of prevalence for space regularity, in the sense that the higher is the order of regularity with respect to space, the lower is the corresponding order of regularity with respect to time.