A study of boundary value problem for an elliptic equation in Hölder spaces.
Let be a -semigroup with unbounded generator . We prove that has generically a very irregular behaviour for as .
We establish some sufficient conditions in order that a given locally closed subset of a separable Banach space be a viable domain for a semilinear functional differential inclusion, using a tangency condition involving a semigroup generated by a linear operator.
This is an expanded version, enriched by references, of my inaugural speech held on November 7, 2001 at the Real Academia de Ciencas Exactas, Físicas y Naturales in Madrid. It explains in a nontechnical way, accessible to a general scientific community, some of the motivation and basic ideas of my research of the last twenty years on a functional-analytical approach to nonlinear parabolic problems.
For a given bi-continuous semigroup on a Banach space we define its adjoint on an appropriate closed subspace of the norm dual . Under some abstract conditions this adjoint semigroup is again bi-continuous with respect to the weak topology . We give the following application: For a Polish space we consider operator semigroups on the space of bounded, continuous functions (endowed with the compact-open topology) and on the space of bounded Baire measures (endowed with the weak-topology)....
This paper is chiefly a survey of results obtained in recent years on the asymptotic behaviour of semigroups of bounded linear operators on a Banach space. From our general point of view, discrete families of operators on a Banach space X (discrete one-parameter semigroups), one-parameter -semigroups on X (strongly continuous one-parameter semigroups), are particular cases of representations of topological abelian semigroups. Namely, given a topological abelian semigroup S, a family of bounded...
We investigate the characterization of almost periodic C-semigroups, via the Hille-Yosida space Z₀, in case of R(C) being non-dense. Analogous results are obtained for C-cosine functions. We also discuss the almost periodicity of integrated semigroups.
A Banach algebra homomorphism on the convolution algebra of integrable functions is the essence of Kisyński's equivalent formulation of the Hille-Yosida theorem for analytic semigroups. For the study of implicit evolution equations the notion of empathy happens to be more appropriate than that of semigroup. This approach is based upon the intertwining of two families of evolution operators and two families of pseudo-resolvents. In this paper we show that the Kisyński approach can be adapted to empathy...