Problèmes de Cauchy globaux
On considère des opérateurs à caractéristiques de multiplicité constante et à partie principale réelle. Avec une hypothèse, dite condition de Lévi, sur les termes d’ordre inférieur, on étend à ces opérateurs le théorème de Duistermaat-Hörmander sur l’invariance par le flot hamiltonien du spectre singulier des solutions de . Un point essentiel réside dans la preuve de l’invariance de la condition de Lévi par transformation canonique. On donne une application à la résolubilité locale de ce type...