A Remark on Invariant Pseudo-Differential Operators.
We prove a sharp pointwise estimate of the nonincreasing rearrangement of the fractional maximal function of ⨍, , by an expression involving the nonincreasing rearrangement of ⨍. This estimate is used to obtain necessary and sufficient conditions for the boundedness of between classical Lorentz spaces.
There is a one parameter family of bilinear Hilbert transforms. Recently, some progress has been made to prove Lp estimates for these operators uniformly in the parameter. In the current article we present some of these techniques in a simplified model...
Let be a weight on . Assume that is continuous on . Let the operator be given at measurable non-negative function on by We characterize weights on for which there exists a positive constant such that the inequality holds for every . Such inequalities have been used in the study of optimal Sobolev embeddings and boundedness of certain operators on classical Lorenz spaces.
We present new formulae providing equivalent quasi-norms on Lorentz-Karamata spaces. Our results are based on properties of certain averaging operators on the cone of non-negative and non-increasing functions in convenient weighted Lebesgue spaces. We also illustrate connections between our results and mapping properties of such classical operators as the fractional maximal operator and the Riesz potential (and their variants) on the Lorentz-Karamata spaces.
We prove that the theorem of Egorov, on the canonical transformation of symbols of pseudodifferential operators conjugated by Fourier integral operators, can be sharpened. The main result is that the statement of Egorov's theorem remains true if, instead of just considering the principal symbols in Sm/Sm-1 for the pseudodifferential operators, one uses refined principal symbols in Sm/Sm-2, which for classical operators correspond simply to the principal plus the subprincipal symbol, and can generally...