Reflexivity and approximate fixed points
A Banach space X is reflexive if and only if every bounded sequence xₙ in X contains a norm attaining subsequence. This means that it contains a subsequence for which is attained at some f in the dual unit sphere . A Banach space X is not reflexive if and only if it contains a normalized sequence xₙ with the property that for every , there exists such that . Combining this with a result of Shafrir, we conclude that every infinite-dimensional Banach space contains an unbounded closed convex...