Existence of positive solutions for semi-positone systems.
In this work, we are interested in the existence of solutions for a class of first order boundary value problems (BVPs for short). We give new sufficient conditions under which the considered problems have at least one solution, one nonnegative solution and two non trivial nonnegative solutions, respectively. To prove our main results we propose a new approach based upon recent theoretical results. The results complement some recent ones.
The Cauchy problem for an infinite system of parabolic type equations is studied. General operators of parabolic type of second order with variable coefficients are considered and the system is weakly coupled. We prove the existence and uniqueness of a bounded solution under Carathéodory type conditions and its differentiability, as well as the existence and uniqueness in the class of functions satisfying a natural growth condition. Both results are obtained by the fixed point method.
In this paper we discuss the existence of mild and strong solutions of abstract nonlinear mixed functional integrodifferential equation with nonlocal condition by using Sadovskii’s fixed point theorem and theory of fractional power of operators.
This paper is devoted to studying the existence of solutions of a nonlocal initial value problem involving generalized Katugampola fractional derivative. By using fixed point theorems, the results are obtained in weighted space of continuous functions. Illustrative examples are also given.
We prove existence results for the Dirichlet problem associated with an elliptic semilinear second-order equation of divergence form. Degeneracy in the ellipticity condition is allowed.
In this paper a fixed point theorem due to Covitz and Nadler for contraction multivalued maps, and the Schaefer’s theorem combined with a selection theorem due to Bressan and Colombo for lower semicontinuous multivalued operators with decomposables values, are used to investigate the existence of solutions for boundary value problems of fourth-order differential inclusions.
In this paper, some fixed point principle is applied to prove the existence of solutions for delay second order differential inclusions with three-point boundary conditions in the context of a separable Banach space. A topological property of the solutions set is also established.