Ishikawa iterative sequence for the generalized Lipschitzian and Phi-strongly accretive mappings in Banach spaces
In this paper we are concerned with a general class of positive linear operators of discrete type. Based on the results of the weakly Picard operators theory our aim is to study the convergence of the iterates of the defined operators and some approximation properties of our class as well. Some special cases in connection with binomial type operators are also revealed.
In this paper, we introduce an iterative algorithm for finding a common element of the set of solutions of a mixed equilibrium problem, the set of fixed points of a nonexpansive mapping, and the the set of solutions of a variational inclusion in a real Hilbert space. Furthermore, we prove that the proposed iterative algorithm converges strongly to a common element of the above three sets, which is a solution of a certain optimization problem related to a strongly positive bounded linear operator....