On Fixed Point Theorems of Maia Type
We show the existence of solutions to a boundary-value problem for fourth-order differential inclusions in a Banach space, under Lipschitz’s contractive conditions, Carathéodory conditions and lower semicontinuity conditions.
Viene dimostrata l'esistenza di soluzioni del problema di Darboux per l'equazione iperbolica sul planiquarto , . Qui, è una funzione continua, con valori in uno spazio Banach che soddisfano alcune condizioni di regolarità espresse in termini della misura di non-compattezza .
An infinite dimensional counterpart of uniform smoothness is studied. It does not imply reflexivity, but we prove that it gives some -type estimates for finite dimensional decompositions, weak Banach-Saks property and the weak fixed point property.
We give in this paper conditions for a mapping to be globally injective in a topological vector space.