Page 1

Displaying 1 – 7 of 7

Showing per page

Bifurcation of periodic solutions to nonlinear measure differential equations

Maria Carolina Mesquita, Milan Tvrdý (2025)

Czechoslovak Mathematical Journal

The paper is devoted to the periodic bifurcation problems for generalizations of ordinary differential systems. The bifurcation is understood in the static sense of Krasnoselski and Zabreko. First, the conditions necessary for the given point to be bifurcation point for non autonomous generalized ordinary differential equations (based on the Kurzweil gauge type generalized integral) are proved. Then, as the main contribution, analogous results are obtained also for the nonlinear non autonomous measure...

Bound sets and two-point boundary value problems for second order differential systems

Jean Mawhin, Katarzyna Szymańska-Dębowska (2019)

Mathematica Bohemica

The solvability of second order differential systems with the classical separated or periodic boundary conditions is considered. The proofs use special classes of curvature bound sets or bound sets together with the simplest version of the Leray-Schauder continuation theorem. The special cases where the bound set is a ball, a parallelotope or a bounded convex set are considered.

Boundary value problems for nonlinear perturbations of some ϕ-Laplacians

J. Mawhin (2007)

Banach Center Publications

This paper surveys a number of recent results obtained by C. Bereanu and the author in existence results for second order differential equations of the form (ϕ(u'))' = f(t,u,u') submitted to various boundary conditions. In the equation, ϕ: ℝ → ≤ ]-a,a[ is a homeomorphism such that ϕ(0) = 0. An important motivation is the case of the curvature operator, where ϕ(s) = s/√(1+s²). The problems are reduced to fixed point problems in suitable function space, to which Leray-Schauder...

Currently displaying 1 – 7 of 7

Page 1