Periodic solutions to certain evolution inequalities
We show that the Porous Medium Equation and the Fast Diffusion Equation, , with , can be modeled as a gradient system in the Hilbert space , and we obtain existence and uniqueness of solutions in this framework. We deal with bounded and certain unbounded open sets and do not require any boundary regularity. Moreover, the approach is used to discuss the asymptotic behaviour and order preservation of solutions.
In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets. We derive some interesting sufficient conditions on practical Ulam-Hyers-Rassias stability from a nonlinear functional analysis point of view. Our method is based on solving nonlinear equations via homotopy method together with Bihari inequality result. Then we consider nonlinear equations...