On a class of nonlinear eigenvalue problems
In the first part of this paper, we prove that in a sense the class of bi-Lipschitz -convex mappings, whose inverses are locally -convex, is stable under finite-dimensional -convex perturbations. In the second part, we construct two -convex mappings from onto , which are both bi-Lipschitz and their inverses are nowhere locally -convex. The second mapping, whose construction is more complicated, has an invertible strict derivative at . These mappings show that for (locally) -convex mappings...
The main goal of the paper is to formulate some new properties of the Ishlinskii hysteresis operator , which characterizes e.g. the relation between the deformation and the stress in a non-perfectly elastic (elastico-plastic) material. We introduce two energy functionals and derive the energy inequalities. As an example we investigate the equation describing the motion of a mass point at the extremity of an elastico-plastic spring.
We prove a theorem on the existence of solutions of a first order functional differential inclusion governed by a class of nonconvex sweeping process with a noncompact perturbation.