The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 14 of 14

Showing per page

Quantification of the reciprocal Dunford-Pettis property

Ondřej F. K. Kalenda, Jiří Spurný (2012)

Studia Mathematica

We prove in particular that Banach spaces of the form C₀(Ω), where Ω is a locally compact space, enjoy a quantitative version of the reciprocal Dunford-Pettis property.

Quasi-constricted linear operators on Banach spaces

Eduard Yu. Emel'yanov, Manfred P. H. Wolff (2001)

Studia Mathematica

Let X be a Banach space over ℂ. The bounded linear operator T on X is called quasi-constricted if the subspace X : = x X : l i m n | | T x | | = 0 is closed and has finite codimension. We show that a power bounded linear operator T ∈ L(X) is quasi-constricted iff it has an attractor A with Hausdorff measure of noncompactness χ | | · | | ( A ) < 1 for some equivalent norm ||·||₁ on X. Moreover, we characterize the essential spectral radius of an arbitrary bounded operator T by quasi-constrictedness of scalar multiples of T. Finally, we prove that every...

Currently displaying 1 – 14 of 14

Page 1